图片 22

【笔记】微分几何

嗯,大致就整理成这样了吧。

但,就和粒子运动部分在高速情况下会和传统黎曼几何有差异一样,对于黎曼引力部分不为零的情况,规范场和引力场的耦合的形式和传统的有所不同,因此在高能情况下也是可以验证的。


首先,将U与A取为前面所说的单位矢量做积分,接着再给结果和矢量V一起做缩并,就可以得到如下结果:

  可见,定义依赖于输运方向的线性的联络函数还是可以成立的。
  这里,联络的第一部分和传统Riemann几何上的克氏符是相同的,而第二部分中的-1阶齐次张量在Riemann几何中恒为零,从而是Finsler几何上所特有的部分——这点在传统的Finsler几何中也是如此。
  更有趣的是,由于-1阶齐次函数的特性,我们可以知道这第二部分其实可以乘上一个任意的参数n而不改变结果,因此现在联络事实上可以写为:

图片 1

从纯几何直观来说,内积可以被表达为这么一个东西:
  矢量V1μ在矢量V2μ方向上的投影长度与V2μ长度的积,就是V1μ和V2μ的内积。
  采用这个几何直观的定义,在黎曼几何中,我们容易证明V1μ到V2μ的内积和V2μ到V1μ的内积是相同的,从而内积是对称的。
  但,在Finsler几何下,这种对称性就被打破了:

而且,这里显然给出了高能下截然不同的行为,这本身就很有挑战——因为简单的实验大约就能把这货彻底否掉了吧。

  我们可以进一步认为联络对切空间中的矢量来说是线性的,从而就有:

由于我们现在取消了原本Finsler几何定义在节丛上的度规张量,所以对于如何做内积是一件很难办的事。

通过本协议,您可以分享并修改本文内容,只要你遵守以下授权条款规定:姓名标示
非商业性相同方式分享
具体内容请查阅上述协议声明。

你看,和传统规范场的作用量就差一个常数系数,从而可以认为具有规范场形式的弱Finsler流形当黎曼部分为闵氏度量的时候给出的就是规范场。

  在如何确定联络的具体形式方面,Riemann几何采用的适配条件是对度规张量的协变微分为零。可我们现在没有度规张量,从而只能采用另一种定义方式。
  另一方面,在传统的Finsler微分几何中,我们可以注意到在很大一类Finsler流形上,连接两点的自平行曲线(即通常所说的“直线”)和连接两点的最短曲线很可能不是同一条直线,也就是说在Finsler流形上一般不存在“连接两点最短的是直线”这样的几何直观与几何经验。可如果我们要求这点继续保持,会怎么样呢?
  要求这点继续保持,就等于是说要求自平行曲线必须是极值曲线,即下面两个方程必须同时成立:

其中

  当然,我们还可以选择将上述定义做一个“代数化”,考虑一个无穷小变化,从而V1μ变化到V2μ=V1μ+dVμ,那么此时上述内积的定义在无穷小范围内可以被表达为更加简洁的形式:

最后是一些讨论。

本文禁止一切纸媒,即印刷于纸张之上的一切组织,包括但不限于转载、摘编的任何应用和衍生。网络平台如需转载必须与本人联系确认。

通过本协议,您可以分享并修改本文内容,只要你遵守以下授权条款规定:姓名标示
非商业性相同方式分享
具体内容请查阅上述协议声明。

研究生最后的一年多一直在研究的就是Finsler几何及其上的物理。
  然后就一直感觉这货似乎很不直觉。。。
  最让人感觉反常的,就是相比黎曼几何,芬斯勒几何中的内积不是定义在切丛上的,而是定义在节丛上的,这个很不自然。
  所以,就一直在考虑怎么从一种完全不同的角度来搞这个问题。
  这就是一份相关的记录。

本文遵守创作共享CC BY-NC-SA
4.0协议

如果喜欢简书,想要下载简书App的话,轻戳这里~~
<small>私人推荐订阅专题:《有意思的文章》《严肃码匠圈》</small>

这里,我们引入第二个假定:Finsler的内积是非对易的。


这个形式当然是非唯一的,尤其对于某些量到底是选A还是V,其实有很大的任意性。这里主要考虑的还是关于第二个参数的一阶齐次要求,接着就是尽可能使被输运的矢量的作用简单,从而一切的复杂性只体现在方向的选择上。

以及辅助-1阶齐次张量:

图片 2

  显然,现在扰率的出现是由于度量的方向依赖性而自然引入的,并不需要如Riemann几何中那样额外地给出与度规无关的反对称部分作为扰率。
  进一步我们可以定义Riemann曲率张量:

过年在家,为了让这个年有点年味,而且也为了纪念马上就要去北漂,所以打算做点东西,于是就有了这篇文章。

在此基础上,我们自然可以在余切丛上也定义内积,只要通过协变矢量与逆变矢量的对偶性即可。
  可是由于内积本身强烈依赖于矢量,从而对于张量来说就不存在内积的合理外推。
  事实上,在Riemann几何中,内积原本是定义在TM(1)×TM(1)上的,但由于其将内积外推到了度规张量,后者的意义远较“内积”本身宽泛与丰富,从而使得TM(m)→TM(m-2)的映射成为可能。
  因此,度规本身是一个比内积具有更丰富内涵的几何实体。
  而现在,我们所有的不过是一个二目算符〈,〉:
TM(1)×TM(1)→TM(0),从而并不能做如此简单的外推,因为这个算符既然不满足线性要求,那就不能通过简单的空间直积来获得推广。
  为此,对于张量的“缩并”(原意是TM(m, n)指定两个指标缩并以获得TM(m-1,
n-1),这里给予了拓展)必须采用和内积不同的定义方式,并保证在回到Riemann几何后可以退化到Riemann几何的结果。
  对这样的“缩并”目前个人认为比较合适的是通过对指标球的积分来获得,只不过对于积分体元来说,似乎还没有给出一个较好的定义。
  很显然,在继内积失去对称与双线性这两个重要特性后,度规张量也失去了定义,而缩并也就与内积分道扬镳了。这里充满了各种陷阱,每一个都很有可能是的这种内积的定义方式失效,从而只能回到将内积定义在节丛从而继续保持对称性与双线性的优点但同时不得不引入第三方矢量的缺点,这个Finsler微分流形的老路上来。

图片 3


如果喜欢简书,想要下载简书App的话,轻戳这里~~
私人推荐订阅专题:《有意思的文章》《严肃码匠圈》

可以看到,现在原本是张量的扰率和曲率,现在都成了张量性算符,即一旦给出方向,便可以给出由这两个方向所确定的一个矢量或者张量。
  如果我们有了缩并算子,那么就可以利用Riemann曲率算符给出Ricci曲率算符Rμ(Aμ),接着再利用缩并算子来给出Ricci曲率标量。
  从形式上来说,现在线性部分表示切丛纤维之间的映射,而作为函数参数的两个方向则完全是流形上的,从而将纤维和底流形在形式上加以了区分。
  相比传统Finsler微分几何,我们发现很多依赖于第三方矢量而定义的曲率张量都消失了,比如Flag曲率等等。
  但也不能说什么收获都没有,毕竟现在所有的几何都定义在切丛上,从而现在如果做物理的话,意义也就更明确了——我们在传统Finsler微分几何中并不确定这第三方矢量的物理意义是什么,只能给出各种假定。

在弱Finsler极限下就有(上标V表示是V的函数):

在Riemann几何中,上述两种形式的定义是等价的。
  如上定义后,我们自然就获得了从V1μ到V2μ的内积的定义,且这样定义的内积虽然是非对称的,但却符合几何直观——虽然几何直观这个要求在真正的几何学看来是一个无稽之谈,但我个人认为比将内积从切丛搬到节丛要靠谱。
  现在内积为一个TM(1)×TM(1)→TM(0)的映射(并非从TM(2)→TM(0)的映射),并记为〈V1μ,
V2μ〉。这样的内积不满足对称性,而且一般也不满足双线性,因为它是高度方向依赖的——这也是Finsler几何和Riemann几何最大的区别,Riemann几何从可以在局部通过坐标变换来变成Minkowski几何,后者是方向无关的。但非Riemann的Finsler几何无论如何都不可能通过坐标变换变成Minkowski几何,从而也就必然是方向依赖的了——在传统Finsler微分流形中,这种方向依赖性体现在内积被定义在节丛上,从而我们始终都需要一个第三方矢量来作为“依赖方向”,而现在这种方向依赖性体现在内积算符的非对称与非双线性上。

当黎曼部分不是闵氏度量时候,我们也可以做同样的操作,此时会得到黎曼部分对应的广义相对论的Ricci标量,上述规范场强,以及规范场部分与黎曼引力部分的耦合项。

如果进一步考虑到这里矢量Vμ作为方向存在从而不应该显含其对坐标的微分,那么上面的结果可以利用Cμνλ的-1阶齐次的特性而得到结果:

从而就有(注意对第二个参数的一阶齐次要求):

我们可以有:

其中

以及度量F是一阶齐次的,我们可以给出联络:

尤其,曲率标量R现在是什么?

假定我们已经有了微分结构,但还没有度量结构。
  那么此时我们可以获得什么呢?
  协变矢量Vμ与逆变矢量Aμ肯定是可以有的,所以我们可以获得各种逆变协变以及混合张量。我们也依然有协变基矢和逆变基矢的对偶关系niμnjμij
  由于协变矢量与逆变矢量的对偶性,我们可以认为它们不过是同一个东西的两种不同表述,所以不妨就用“矢量”来代替。
  矢量在切空间中的表示就是协变矢量,而在余切空间中的表示就是逆变矢量。
  在只有微分结构为没有度量结构的时候,我们还可以定义一种“场”,便是在每一点上都可以将TM(m,
n)中的元素映射到TM(p,
q)中,即可以将一个m阶协变n阶逆变的张量映射到一个p阶协变q阶逆变的张量,或者采用之前的对偶之后的观点来说,便是将一个m+n阶张量映射为一个p+q维张量。
  在坐标变换下,上述内容都可以具有明确的变换规则而不会引起歧义。
  但,比较有趣的是如果是非坐标变换,比如对已一般的映射F:
TM(1)→TM(1),似乎就很难推广到任意的TM(m, n)→TM(p,
q)上,除非映射是线性映射,那么可以在操作意义上找到合理的外推。

这里必须要指出的一点是,上述计算存在几点很不严谨的地方。

这里的第二部分在形式上很容易让人想起Riemann几何中的扰率,但本质上这两者却是很不相同的,我们事实上还可以引入一个独立的反对称张量Tμνλ与Vμ的积TμνλVλ来作为扰率存在而不影响结果。
  由于联络现在依赖于方向,从而联络对于输运方向一般是非线性。但对于输运的矢量却是线性的,从而这样的联络可以对各种张量定义(协变张量的协变微分这里已经给出,而逆变张量的协变微分则可以通过对偶性得到)。而且,也由于联络对输运方向是非线性的,从而现在天然地就会出现扰率(而无需引入上述提及的反对称扰率张量):

接下来,对其考虑前面所说的积分。

进一步,利用预设联络对V来说是线性的,引入上述辅助张量的逆:

通过上述积分得到的标量T,在黎曼几何中与张量T对下标的缩并得到的标量之间,只差一个由流形维度决定的系数。

  这样,引入辅助0阶齐次对称张量

我们将规范矢量场A及其场强F代入:

有了内积后,我们自然要问这么一个问题:现在的联络是什么?
  所谓联络,是将某点切空间中的矢量输运到邻点切空间中的一个映射,从而可以被这么标记:

图片 4

下面,在这样的空间上引入度量结构,且不要求该度量是黎曼的,从而可以是芬斯勒度量。

于是上面式子中的矢量差部分Q(u-v)就变得很微妙了,到底是u-v还是v-u?


为此,这里我们采用如下方案:

  在这个定义中,“投影”被定义为从V2μ的端点到V1μ上某一点的距离最短,则该点就是V2μ到V1μ的投影位置。值得注意的是,对于最一般化的Finsler流形,上述的方向如果反过来的话,将给出截然不同的定义结果,因为在最一般化的Finsler度量中,并不要求如下等式的成立:


这里后面的含有联络的部分变给出了扰率算符:

其中第一部分是传统的黎曼型度量,后者为对黎曼型度量的偏离,从而构成Finsler度量。

本文遵守创作共享CC BY-NC-SA
4.0协议
**

但对于Finsler度量,上述几个式子彼此之间是不等价的,有其对于某些Finsler度量,如果不满足强一阶齐次,而是弱一阶齐次,那么此时我们有:

度量和内积的关系是非常有意思的。
  可以说,内积包含了度量,因为矢量Vμ与自身的内积就是它的模长的平方,这是内积与度量的契合点:〈Vμ,
Vμ〉=|Vμ|2
  在传统的Finsler几何中,从度量到内积的获取方法是这样的:

下面我们用|V|来代表流形上矢量V在开头所说的Finsler型度量的黎曼部分作用下的长度,从而对于弱Finsler流形,上述内积可以给出如下形式:

  对于黎曼度量,上市左侧的度规张量只是位置xμ的函数,从而和矢量yμ无关,因此流形切空间中矢量的内积只和切空间所在位置的度规张量相关,也就是说内积是定义在切丛上的。
  但在Finsler几何中,左侧的度规张量不但和位置xμ相关,还与矢量yμ相关,从而现在矢量之间的内积不但和参与内积的两个矢量以及切空间所在位置相关,还与某个第三方的矢量相关,从而内积是定义在其节丛上的,而非切丛。
  通过简单的推演我们可以知道,如果要保证传统内积的定义,那么只能将内积放到节丛上,从而此问题无法避免。
  但,内积的定义本身是从经验中得来的,而原本的经验中定义在切丛还是节丛上并没有明确的说明,虽然经验中都是定义在切丛而非节丛上的,所以我们可以适当地放弃某些既定经验,特别是没有写成文的经验,来构造一个定义在节丛上的内积。
  可,反过来说,我们也可以放弃一些既定的成文经验,从而选择另一条路。
  这么一来,问题就很有趣了——假定内积不是对称的,会如何?

特别,当我们考虑的是规范场形的弱Finsler流形时,这种“激化”由规范矢量场A给出。

进而有:

这样的话,会为计算带来一定的便利,比如度量的平方(这个在Finsler几何中比度量本身更常用):

这样的Finsler度量一般来说是很难直接求解的,于是我们这里假定:h非常小,从而所有高阶项都可以忽略

图片 5

接下来,让我们讨论一个很有趣也很有难度,同时也是一个实验性的话题:上述这个流形上的曲率,是多少?


主要就是对于缩并用的积分的计算,这个计算在欧氏几何上可以给出所要的结果,在黎曼几何上也可以,但对于时空这种赝黎曼几何,则是存在一个无穷大发散的,将这个无穷大发散扣除后的有限部分,可以给出所要的结果。

最简单的,当然是直接使用如下形式的内积定义:


为了简单起见,我们现在假定上述弱Finsler流形的黎曼度量部分是Minkowsky的,从而现在流形的联络函数可以写为:

图片 6

嗯,虽然有很多计算,但基本还是一个脑洞,一个Toy Theory。

图片 7

图片 8

因此,如果我们采用上述积分形式来作为张量缩并的方案的话,那么我们就可以继续讨论在如上框架下的流形曲率的问题了。


图片 9

另一方面,即便是黎曼几何上没问题,这个积分在Finsler几何下是否依然成立,这就不知道了。当然,这里处理的是弱Finsler几何,所以或许还是可行的吧。

图片 10

而在弱Finsler流形上,这个性质会有所不同:由于单位矢量被度量的h部分做了激化,从而有可能会在奇数次项中留下非零部分。

图片 11


图片 12

但,我们都知道,Clifford型内积的表示其实也并不唯一,比如下面这几个在二次型Q的情况下是等价的:

图片 13

但这种定义的缺点,就是两个流形上矢量的内积还取决于第三个矢量的方向(因为是定义在节丛上的),这点本身也是有点反传统的。

Finsler几何当然不是二次型度量的,所以不能直接使用上述Clifford代数结构,从而传统的Finsler几何采用如下形式的定义在节丛上的内积:

而规范场的部分,在加速度的表达式中,我们可以认为粒子运动的切矢量的长度为常数且模为1,从而第一项是引力加速度,第二项是规范场导致的加速度,第三项则是和速度的三阶项相关,从而会给出高速运动下的高能修正,因此如果这个模型是正确的,那么我们可以预期在高能下会有不同的粒子行为。第四项在传统规范场下自动消失从而不考虑。

这东西是不是看着非常非常眼熟?

但这种“正规化”为什么可以做,则仅仅是一种随意的选择,目前并不知道什么依据——或许是通过Wick转动,从时空转动到欧氏空间,然后做积分,再转回去,这倒是很传统的量子场论中用过的手段。

如果我们要求极值曲线与自平行曲线在任何情况下都相等,那么就可以得到联络的表达:

现在我们考虑交错协变微分(弱Finsler极限下):

这里Q是一个二次型,且容易看出它就是度量的平方(假定Clifford代数定义在一个具有度量结构的几何流形上)。

那么,现在,我们就采用如下形式的内积来讨论:

而且,这里时空的度量似乎是定死的,完全不受带荷粒子所携带的力荷的影响,这种对所有物质一视同仁的特点,显然会给出不带电粒子的行为也和带电粒子一样这种诡异的事情。因此,或许实际情况时空的度量会随着在其上运动的粒子的某些属性而改变,也或者这个模型不过真的就只是一个Toy罢了——个人目前倾向于后者。

以及自平行曲线:

有了度量,我们可以来看流形上的极值曲线:

如果我们将分子被积函数拓展为一个n阶张量与n个单位矢量构成的函数,那么这个积分的特点,就是如果该数中含有奇数次个单位矢量,那么这个积分为0;如果含有偶数次个,那么会得到非零的结果,其中如上形式的二次形可以给出张量的缩并。

即便我们可以通过最开始的方法定义两个矢量的内积,但对于更普通的张量,恐怕是无能为力的。

就和紧致化是对蜷缩的额外维做展开后只取一阶项一样,这种弱Finsler几何的方法也是对Finsler度量做微扰后只取展开的一阶项,两者在这个思想上是相同的,随后的差异就体现在弦论是针对具有额外维的黎曼几何做处理,而Finsler几何则是对具有非黎曼度量的四维Finsler时空做处理。



本文禁止一切纸媒,即印刷于纸张之上的一切组织,包括但不限于转载、摘编的任何应用和衍生。网络平台如需转载必须与本人联系确认。

图片 14

弦论利用额外维来做这种由内而外的转变,其实也是一个想法。

图片 15

图片 16

图片 17

那么,如果我们这里强行使用Clifford型内积,会得到什么呢?

至于联络函数最后的部分,则是一个非对称项,可以视为扰率,这里不考虑。

图片 18


然后,我们来看Clifford代数中的一个性质:

当然了,至于最后能不能做成,这个另说,或许这个模型始终也不过是一个Toy罢了。

图片 19

因此,在作为作用量的时候,在全空间积分并忽略边界项后可得:

其中上标(1)的部分来源于场强H与一个单位矢量的共同积分,上标(2)的部分来源于场强H与两个单位矢量的共同积分。

和一些量子引力的流派(比如这次吴岳良院士所采用的从郭汉英等老一辈我国物理学家开始就是用的Lorentz群规范场的流派)中将广义相对论中作为流形联络的引力变为纤维主丛联络的方法不同,这里不再将外延几何转化为内蕴几何,而是反过来,将原本作为内蕴的纤维丛性质的规范场视为外延的度量上的Finsler型变化,从而是将内蕴几何转化为外延几何。

其中曲面dΩ是流形上的单位球面,即指标球,而矢量n就是从球心指向单位球面的单位向量。

从最终的表达来看,联络函数的第一项的第一部分是传统黎曼引力项,第二项的第一部分是传统规范场项。第一项与第二项的第二部分则都是引力与规范场的耦合项,且第一项的第二部分在选择传统规范场形式的时候自动消失。

其中传统偏导是对坐标的偏导,而变分符号在这里表示对矢量部分的偏导,联络函数对第二个变量是一阶齐次的。

可以看到,这么选择的联络函数,对于两个参数都是一阶齐次的,算是一个很好的性质。更距离来说,对于方向矢量V不是线性的而只是一阶齐次,而对于被输运矢量A确实线性的。

当然也有很小很小的可能,我们找到了统一引力与规范场的框架,科科~

假定时空的度量具有如下Finsler形式:

这个内积的定义在L为黎曼型度量的时候天然回归到黎曼型内积,而在非黎曼型的Finsler度量下,则能给出不同的结果——特别是,如果Finsler度量具有强一阶齐次性,那么这个内积是对称的;但如果只有弱一阶齐次性,那么这个内积非对称,非对称的部分可以理解为扰率。

图片 20

图片 21

图片 22